The Potential Impact of Changes in Fertility on Infant, Child, and Maternal Mortality

James Trussell
Anne R. Pebley

WORLD BANK STAFF WORKING PAPERS
Number 698

POPULATION AND DEVELOPMENT SERIES
Number 23
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Sources</td>
<td>5</td>
</tr>
<tr>
<td>III. Impact on Mortality of Changing Maternal Age, Parity, and Birth Spacing Patterns</td>
<td>11</td>
</tr>
<tr>
<td>- Infant and Child Mortality</td>
<td>11</td>
</tr>
<tr>
<td>- Maternal Mortality</td>
<td>23</td>
</tr>
<tr>
<td>IV. Actual Impact of Family Planning Programs</td>
<td>26</td>
</tr>
<tr>
<td>V. Summary and Conclusions</td>
<td>29</td>
</tr>
<tr>
<td>Notes</td>
<td>31</td>
</tr>
<tr>
<td>Appendix</td>
<td>36</td>
</tr>
<tr>
<td>References</td>
<td>42</td>
</tr>
</tbody>
</table>
I. Introduction

Certain aspects of reproductive behavior, such as the maternal age and parity at the time a child is born and child spacing, have long been thought to affect both a mother's and a child's chance of survival. During the transition from high to low fertility, as contraceptive use increases, these variables change in ways which may alter child and maternal mortality rates. For example, the proportion of live births occurring to women at high parities and older ages is likely to decline significantly. Reduction in maternal and child mortality is frequently one of the stated objectives of family planning programs in developing countries. Nevertheless, there are relatively few estimates of the size of the mortality reductions thought to accompany changes in fertility.

In this paper, we explore the relation between changes in the timing and quantity of fertility, such as those that may result from an effective family planning program in developing countries, and changes in child and maternal mortality. First, we outline mechanisms through which reproductive behavior may influence the levels of child and maternal mortality in a population. Next, we use results from recent studies to estimate the changes in mortality which might result from hypothetical alterations in maternal age, birth order and birth spacing distributions of live births. Finally, we discuss the problem of predicting how these distributions would actually change as the result of implementing effective family planning programs or, more generally, increasing contraceptive use in populations of developing countries.
We consider three ways in which the implementation of a successful family planning program may affect child mortality: 1) by changing the ages at which women have children, 2) by reducing the proportion of births which occur at high parities and 3) by lengthening the spacing between births. Previous research suggests that all three changes would reduce infant and child mortality.²

When examined one at a time, both maternal age at the time of a birth and a child's birth order are consistently found to be related to the risk of infant and child mortality, usually in a J-shaped pattern [Nortman, 1974; Omram, 1976 and 1981]. That is, the risk is moderately high for infants of very young mothers and for first births, declines for infants of mothers in their twenties and of birth orders 2 and 3, and then rises with further increases in maternal age and birth order. Maternal age seems to be related to the risk of mortality even when parity is controlled, and vice versa; there is, moreover, likely to be an important interaction between the two.

Nortman [1974:4] argues that the basic curvilinear relationship between infant mortality, birth order, and maternal age results from underlying biological factors. Very young women's reproductive systems, for example, may not be adequately prepared for the stress of a pregnancy, while advanced aging seems to reduce the efficiency of the entire reproductive process. Higher order births may be at greater risk because of general exhaustion of a woman's reproductive resources, whereas a first birth may be riskier because the body is undergoing partuition for the first time.
Observed maternal age and birth order differentials in infant and child mortality may be exaggerated, however, for at least two reasons. First, socioeconomic status may be a confounding factor. Poorer women, who experience higher child mortality, contribute disproportionate shares of higher order births and births at very early and late maternal ages. Second, the effect of high parity, or of high age when parity is not controlled, may reflect the harmful impact on child survival of closely spaced births. Hence, it is essential to control for socioeconomic correlates of child mortality and for birth spacing patterns when trying to isolate the real effects of maternal age and parity.3

Most discussion about the ways in which close spacing of births may contribute to higher child mortality center around two principal mechanisms. One possibility is that competition for limited maternal and familial resources among closely spaced children [Omram, 1981] may jeopardize the health of both the older and younger sibling. For example, the beginning of another pregnancy shortly after a previous birth may result in early weaning of the first child. Similarly, the younger child may also receive less adult attention because of competition from a slightly older sibling with similar needs. The second hypothesis suggests that a mother's nutritional status is eroded by a rapid sequence of pregnancies and periods of lactation [Jelliffe and Jelliffe, 1978]. Poor maternal nutritional status increases the risk of premature births and low birth weight (small-for-date) babies, who have a poorer chance for survival [Fedrick and Adelstein, 1973]. Malnourished mothers may also be less successful at breastfeeding their children either because of diminished quantity or quality of breastmilk or because low birth weight infants have
a harder time breastfeeding. Hence, taken together, the two mechanisms suggest that close spacing of two births may result in poorer survival chances of both, and therefore that we might expect that lengthening birth intervals would increase the overall likelihood of child survival.

Increased use of contraception may also lower the risk of maternal death per birth (the maternal mortality ratio) by: 1) reducing the proportion of births occurring to youngest and oldest women; 2) reducing the proportion of births at high parity; and 3) lengthening birth intervals. As a consequence of these changes, the maternal mortality rate is further lowered because childbearing is less frequent. As in the case of infant and child mortality, there is evidence that the risk of maternal mortality is higher for women under 20 and over 35, and for women at parity 0 and very high parities (see, for example, Nortman [1974] and Tietze [1977]). By contrast, little is known about the effect of birth spacing on maternal mortality, although it is likely that maternal depletion (if it exists) would increase the risk of maternal mortality among women with very short birth intervals. An additional effect on maternal mortality of an increase in contraceptive use would be a reduction in the overall level of fertility. Thus, a smaller fraction of women would be exposed to the risk of maternal mortality in any given year. In summary, increased contraceptive use is likely to result in lower maternal mortality because of a reduction in both the number of deaths per birth and the number of births.

How large an impact could changes in fertility resulting from a family planning program have on infant, child and maternal mortality? In the next section we describe recent studies which explore the relation between fertility variables and mortality. We then employ results from these
studies to estimate the magnitude of changes in mortality which might be expected from different types of fertility changes.

II. Sources

We draw on the results of five studies to assess the potential impact of increased contraceptive use on infant and child mortality. The first two, by Martin et al. [1983] and Trussell and Hammerslough [1983], employ hazard models to estimate the effects of several covariates, including maternal age and parity, on mortality in Indonesia, Pakistan, the Philippines, and Sri Lanka. Both studies find significant effects of these two variables on the risk of dying. In the third study, Holland [1983] also uses hazard models to assess the effect of breastfeeding on infant mortality in Malaysia. To avoid confounding his estimates, he includes several other covariates as controls, including the length of the prior birth interval. This variable is constructed by combining it with birth order so that first births can be included in the analysis. 6

A fourth study by Hobcraft et al. [1983] focuses specifically on the effects of birth spacing. The investigators are interested in estimating the relationship between mortality of an "index" child and the number of other births which occurred within certain time periods before and after that child's birth. The periods they select are: 2-6 years before the birth of the index child, 0-2 years before, and 0-17 months (for \(q_1 \)) or 0-29 months (for \(q_2 \)) after the birth of the index child. 7 By separating the effects of prior intervals from the effects of those subsequent, they hoped to determine whether short child spacing is harmful because of maternal
depletion or because of sibling competition for resources. Since they find a negative association between survival probabilities of the index child and closely spaced subsequent siblings, they conclude that the competition effect is strong since the principal impact of maternal depletion syndrome is thought to operate through a short prior interval. They also find that prior close spacing has a substantial negative impact on survival probabilities, but they are unable to distinguish possible competition effects from the possible maternal depletion syndrome. Since the study is a cross-national analysis involving 26 countries, only one control variable (mother's education) was included, to reduce costs.

Finally, Cleland and Sathar [1983] use a sample of births occurring between one and fifteen years prior to the Pakistan Fertility Survey to explore the relation between birth spacing and infant and child mortality in greater depth. They calculate infant \((i_q_0) \), early childhood \((i_q_1) \), and later childhood \((i_q_2) \) mortality rates by the length of the preceding birth interval and by whether or not the previous child survived until his/her second birthday. Their results indicate that a strong positive relation between the length of the preceding interval and child survival generally persists even when the survivorship of previous child, maternal education, rural-urban residence, sex of the child, maternal age, and parity are held constant.\(^8\) One possible explanation for this association would be that women breastfed all children for similar lengths of time; those women who lactate for short periods, therefore, would have short interbirth intervals and also higher infant and child mortality. If so, then the association between interval length and mortality would be spurious. Cleland and Sathar conclude, however, that early weaning of the
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Sources</td>
<td>5</td>
</tr>
<tr>
<td>III. Impact on Mortality of Changing Maternal Age,</td>
<td>11</td>
</tr>
<tr>
<td>Parity, and Birth Spacing Patterns</td>
<td></td>
</tr>
<tr>
<td>Infant and Child Mortality</td>
<td>11</td>
</tr>
<tr>
<td>Maternal Mortality</td>
<td>23</td>
</tr>
<tr>
<td>IV. Actual Impact of Family Planning Programs</td>
<td>26</td>
</tr>
<tr>
<td>V. Summary and Conclusions</td>
<td>29</td>
</tr>
<tr>
<td>Notes</td>
<td>31</td>
</tr>
<tr>
<td>Appendix</td>
<td>36</td>
</tr>
<tr>
<td>References</td>
<td>42</td>
</tr>
</tbody>
</table>
I. Introduction

Certain aspects of reproductive behavior, such as the maternal age and parity at the time a child is born and child spacing, have long been thought to affect both a mother's and a child's chance of survival. During the transition from high to low fertility, as contraceptive use increases, these variables change in ways which may alter child and maternal mortality rates. For example, the proportion of live births occurring to women at high parities and older ages is likely to decline significantly. Reduction in maternal and child mortality is frequently one of the stated objectives of family planning programs in developing countries. Nevertheless, there are relatively few estimates of the size of the mortality reductions thought to accompany changes in fertility.

In this paper, we explore the relation between changes in the timing and quantity of fertility, such as those that may result from an effective family planning program in developing countries, and changes in child and maternal mortality. First, we outline mechanisms through which reproductive behavior may influence the levels of child and maternal mortality in a population. Next, we use results from recent studies to estimate the changes in mortality which might result from hypothetical alterations in maternal age, birth order and birth spacing distributions of live births. Finally, we discuss the problem of predicting how these distributions would actually change as the result of implementing effective family planning programs or, more generally, increasing contraceptive use in populations of developing countries.
We consider three ways in which the implementation of a successful family planning program may affect child mortality: 1) by changing the ages at which women have children, 2) by reducing the proportion of births which occur at high parities and 3) by lengthening the spacing between births. Previous research suggests that all three changes would reduce infant and child mortality.²

When examined one at a time, both maternal age at the time of a birth and a child's birth order are consistently found to be related to the risk of infant and child mortality, usually in a J-shaped pattern [Nortman, 1974; Omram, 1976 and 1981]. That is, the risk is moderately high for infants of very young mothers and for first births, declines for infants of mothers in their twenties and of birth orders 2 and 3, and then rises with further increases in maternal age and birth order. Maternal age seems to be related to the risk of mortality even when parity is controlled, and vice versa; there is, moreover, likely to be an important interaction between the two.

Nortman [1974:4] argues that the basic curvilinear relationship between infant mortality, birth order, and maternal age results from underlying biological factors. Very young women's reproductive systems, for example, may not be adequately prepared for the stress of a pregnancy, while advanced aging seems to reduce the efficiency of the entire reproductive process. Higher order births may be at greater risk because of general exhaustion of a woman's reproductive resources, whereas a first birth may be riskier because the body is undergoing partuition for the first time.
Observed maternal age and birth order differentials in infant and child mortality may be exaggerated, however, for at least two reasons. First, socioeconomic status may be a confounding factor. Poorer women, who experience higher child mortality, contribute disproportionate shares of higher order births and births at very early and late maternal ages. Second, the effect of high parity, or of high age when parity is not controlled, may reflect the harmful impact on child survival of closely spaced births. Hence, it is essential to control for socioeconomic correlates of child mortality and for birth spacing patterns when trying to isolate the real effects of maternal age and parity.\(^3\)

Most discussion about the ways in which close spacing of births may contribute to higher child mortality center around two principal mechanisms. One possibility is that competition for limited maternal and familial resources among closely spaced children [Omram, 1981] may jeopardize the health of both the older and younger sibling. For example, the beginning of another pregnancy shortly after a previous birth may result in early weaning of the first child. Similarly, the younger child may also receive less adult attention because of competition from a slightly older sibling with similar needs. The second hypothesis suggests that a mother's nutritional status is eroded by a rapid sequence of pregnancies and periods of lactation [Jelliffe and Jelliffe, 1978]. Poor maternal nutritional status increases the risk of premature births and low birth weight (small-for-date) babies, who have a poorer chance for survival [Fedrick and Adelstein, 1973]. Malnourished mothers may also be less successful at breastfeeding their children either because of diminished quantity or quality of breastmilk or because low birth weight infants have
a harder time breastfeeding. Hence, taken together, the two mechanisms suggest that close spacing of two births may result in poorer survival chances of both, and therefore that we might expect that lengthening birth intervals would increase the overall likelihood of child survival.

Increased use of contraception may also lower the risk of maternal death per birth (the maternal mortality ratio) by: 1) reducing the proportion of births occurring to youngest and oldest women; 2) reducing the proportion of births at high parity; and 3) lengthening birth intervals. As a consequence of these changes, the maternal mortality rate is further lowered because childbirth is less frequent. As in the case of infant and child mortality, there is evidence that the risk of maternal mortality is higher for women under 20 and over 35, and for women at parity 0 and very high parities (see, for example, Nortman [1974] and Tietze [1977]). By contrast, little is known about the effect of birth spacing on maternal mortality, although it is likely that maternal depletion (if it exists) would increase the risk of maternal mortality among women with very short birth intervals. An additional effect on maternal mortality of an increase in contraceptive use would be a reduction in the overall level of fertility. Thus, a smaller fraction of women would be exposed to the risk of maternal mortality in any given year. In summary, increased contraceptive use is likely to result in lower maternal mortality because of a reduction in both the number of deaths per birth and the number of births.

How large an impact could changes in fertility resulting from a family planning program have on infant, child and maternal mortality? In the next section we describe recent studies which explore the relation between fertility variables and mortality. We then employ results from these
studies to estimate the magnitude of changes in mortality which might be expected from different types of fertility changes.

II. Sources

We draw on the results of five studies to assess the potential impact of increased contraceptive use on infant and child mortality. The first two, by Martin et al. [1983] and Trussell and Hammerslough [1983], employ hazard models to estimate the effects of several covariates, including maternal age and parity, on mortality in Indonesia, Pakistan, the Philippines, and Sri Lanka. Both studies find significant effects of these two variables on the risk of dying. In the third study, Holland [1983] also uses hazard models to assess the effect of breastfeeding on infant mortality in Malaysia. To avoid confounding his estimates, he includes several other covariates as controls, including the length of the prior birth interval. This variable is constructed by combining it with birth order so that first births can be included in the analysis.6

A fourth study by Hobcraft et al. [1983] focuses specifically on the effects of birth spacing. The investigators are interested in estimating the relationship between mortality of an "index" child and the number of other births which occurred within certain time periods before and after that child's birth. The periods they select are: 2-6 years before the birth of the index child, 0-2 years before, and 0-17 months (for \(q_1 \)) or 0-29 months (for \(q_2 \)) after the birth of the index child.7 By separating the effects of prior intervals from the effects of those subsequent, they hoped to determine whether short child spacing is harmful because of maternal
depletion or because of sibling competition for resources. Since they find a negative association between survival probabilities of the index child and closely spaced subsequent siblings, they conclude that the competition effect is strong since the principal impact of maternal depletion syndrome is thought to operate through a short prior interval. They also find that prior close spacing has a substantial negative impact on survival probabilities, but they are unable to distinguish possible competition effects from the possible maternal depletion syndrome. Since the study is a cross-national analysis involving 26 countries, only one control variable (mother's education) was included, to reduce costs.

Finally, Cleland and Sathar [1983] use a sample of births occurring between one and fifteen years prior to the Pakistan Fertility Survey to explore the relation between birth spacing and infant and child mortality in greater depth. They calculate infant ($1q_0$), early childhood ($1q_1$), and later childhood ($3q_2$) mortality rates by the length of the preceding birth interval and by whether or not the previous child survived until his/her second birthday. Their results indicate that a strong positive relation between the length of the preceding interval and child survival generally persists even when the survivorship of previous child, maternal education, rural-urban residence, sex of the child, maternal age, and parity are held constant. One possible explanation for this association would be that women breastfed all children for similar lengths of time; those women who lactated for short periods, therefore, would have short interbirth intervals and also higher infant and child mortality. If so, then the association between interval length and mortality would be spurious. Cleland and Sathar conclude, however, that early weaning of the
index child cannot, in general, explain the association. They also examine the effect of subsequent interval length on child mortality and find that short subsequent intervals have a negative effect on child survival, principally because of earlier weaning. They conclude that maternal depletion is a more plausible explanation for the relation between child spacing and infant and child mortality since this association is not diluted by inclusion of information on the survivorship of the previous child.

All the analysts except Holland use World Fertility Survey data. Holland's results come from the Malaysian Family Life Survey (MFLS), conducted by the Malaysian Department of Statistics, Survey Malaysia, and the Rand Corporation. The MFLS and WFS data sets that have been evaluated have been shown to be of high quality. The variables included in each study for each country are shown in Table 1. This table also includes estimates of $1q_0$ and $4q_1$ for each population from Hobcraft et al. [1983].

In the next section of this paper, we assess the likely proportionate changes in these indices of child mortality rates that would be induced by changing observed distributions of births by maternal age, birth order, and spacing patterns.

Information on the levels, trends, and correlates of maternal mortality in developing countries is far rarer, and measurement is much more difficult, than for infant and child mortality. Part of the reason is that reproductive complications are only one of the many causes of death among women of reproductive ages. Thus, an accurate classification of deaths by cause is required to determine the level of maternal mortality. Even in the United States, maternal mortality is believed to be
TABLE 1. Analyses employed in assessing the effect of family planning on infant and child mortality. Countries are listed by region, and within region by descending value of q_0 (not shown).

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>Source</th>
<th>Factors in model</th>
<th>Birth cohorts</th>
<th>Reference q_0</th>
<th>Reference q_1</th>
</tr>
</thead>
</table>
| **Africa**
| Senegal | 1 | M,PB,SB | 1963-73 | 120 | 151 |
| Lesotho | 1 | M,PB,SB | 1962-72 | 132 | 054 |
| Kenya | 1 | M,PB,SB | 1962-73 | 095 | 064 |
| Sudan | 1 | M,PB,SB | 1963-74 | 076 | 063 |
| Ghana | 1 | M,PB,SB | 1964-75 | 075 | 058 |

| **Americas**
Haiti	1	M,PB,SB	1962-72	147	082
Peru	1	M,PB,SB	1962-73	107	064
Ecuador	1	M,PB,SB	1964-74	085	052
Mexico	1	M,PB,SB	1961-72	075	036
Colombia	1	M,PB,SB	1961-71	068	042
Costa Rica	1	M,PB,SB	1961-71	071	019
Guyana	1	M,PB,SB	1960-70	055	014
Panama	1	M,PB,SB	1960-71	044	018
Jamaica	1	M,PB,SB	1960-71	041	014

| **Asia**
Nepal	1	M,PB,SB	1961-71	168	096
Bangladesh	1	M,PB,SB	1960-71	136	080
Pakistan	1	M,PB,SB	1960-70	130	077
Pakistan	3	M,F,TP,A,$S,$BO,R,U	~1941-75	130	077
Pakistan	5	M,A,PB,SB,$S,$BO,U,BF,SS	~1960-75	130	077
Indonesia	1	M,PB,SB	1961-71	106	081
Indonesia	3	M,F,TP,A,$S,$BO,R,U	~1972-76	106	081
Thailand	1	M,PB,SB	1960-70	079	034
Jordan	1	M,PB,SB	1961-71	069	026
Syria	1	M,PB,SB	1963-73	067	025
Philippines	1	M,PB,SB	1963-73	055	012
Sri Lanka	1	M,PB,SB	1960-70	055	024
Sri Lanka	4	M,F,TP,A,$W,$S,$BO,T,E,U	~1941-75	055	024
Korea	1	M,PB,SB	1959-69	053	021
Malaysia	1	M,PB,SB	1959-69	043	009
Malaysia	2	BF,M,BW,BO,$PB,TP,S,E,W,A	~1942-76	043	009

b) Factors: M—mother's education; F—father's education; TP—time period of birth; A-age of mother; PB—previous birth interval; SB—subsequent birth interval; W—water supply; L-lighting source; S-sex; BO—birth order; T-toilet facilities; R-region; E-ethnicity; U-urban/rural; BF-breastfeeding; BW-birth weight; SS—survival status of previous child.

c) Reference q_0 and q_1: pertains to the birth cohorts for each country listed for source (1). Values taken from Hobcraft et al. [1983], Table 1.
underestimated by at least 25 percent [Sachs et al., 1982]. Furthermore, even in high mortality and fertility settings, maternal mortality is a rare occurrence. For example, Chen et al. [1977] report a high maternal mortality ratio (maternal deaths per 1,000 live births) for Matlab Thana, Bangladesh of 5.7 deaths per 1000 live births. By contrast, the infant mortality rate in Matlab for the same period was 124 deaths per 1000 live births. The maternal mortality rate was 0.9 maternal deaths per 1000 women years of exposure between the ages of 15 and 49, indicating that the probability of a woman dying from a maternity-related cause was small indeed.

The majority of studies of maternal mortality in LDCs concern the experience of women who enter a maternity hospital for delivery and/or treatment of pregnancy complications. One example is given by Chi et al. [1981] using data from admissions to 12 teaching hospitals in Indonesia. The obvious problem with generalizing from such results, particularly in a poor country, is that only a select sample of women deliver in a hospital and, furthermore, that women who are suffering serious complications are more likely to be hospitalized.

By contrast, Chen et al. [1974] were able to follow an entire population of women in Matlab Thana, Bangladesh. Their results by age and parity are shown in Table 2. To our knowledge, this is the only population-based study available that reports rates cross-classified by age and parity. In the next section, we consider the possible consequences for maternal mortality of altering distributions of births by either maternal age or parity and of lowering the fertility level.

<table>
<thead>
<tr>
<th>Maternal age (years)</th>
<th>0-1</th>
<th>2-3</th>
<th>4-5</th>
<th>6 or more</th>
<th>All parities</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-19</td>
<td>8.8</td>
<td>3.1</td>
<td>45.4</td>
<td>0.0</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>(4,069)</td>
<td>(323)</td>
<td>(22)</td>
<td>(2)</td>
<td>(4,416)</td>
</tr>
<tr>
<td>20-29</td>
<td>4.5</td>
<td>3.6</td>
<td>5.8</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>(2,449)</td>
<td>(4,439)</td>
<td>(3,072)</td>
<td>(1,326)</td>
<td>(11,286)</td>
</tr>
<tr>
<td>30-39</td>
<td>12.8</td>
<td>2.5</td>
<td>2.5</td>
<td>7.4</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>(78)</td>
<td>(396)</td>
<td>(1,212)</td>
<td>(2,981)</td>
<td>(4,667)</td>
</tr>
<tr>
<td>40-49</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>8.0</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(13)</td>
<td>(54)</td>
<td>(373)</td>
<td>(447)</td>
</tr>
<tr>
<td>All Ages</td>
<td>7.2</td>
<td>3.5</td>
<td>5.0</td>
<td>6.6</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>(6,603)</td>
<td>(5,171)</td>
<td>(4,360)</td>
<td>(4,682)</td>
<td>(20,816)</td>
</tr>
</tbody>
</table>

Source: Adapted from Chen et al., [1977]

() = Figures in parentheses are the numbers of live births.
III. Impact on Mortality of Changing Maternal Age, Parity and Birth Spacing Patterns

Infant and Child Mortality

To estimate the effect on mortality of changes in fertility, we must assume that maternal age, parity and birth spacing are causally related to infant and child mortality when the effects of potentially confounding variables are controlled, as in the studies described above. We can, then, use the results of statistical models reported in these studies to predict how large a mortality change would result from a specific fertility pattern change. The methods employed to quantify the impact of a change in the fertility variables are briefly outlined below and are described fully in the Appendix. The reader is warned that assumptions described in the Appendix are essential to a full understanding of the results.

Our calculations are based on parameter estimates and sample characteristics reported in the studies described above. In each study, the analysts estimated the parameters (or coefficients) of equations linking the probability of surviving to individual characteristics of the child -- such as the age of his/her mother and birth order. To give a simple example, we might estimate the coefficients a and b in the equation:

$$ p_i = a + b x_i + \text{error}, $$

where p_i takes on the value one if the child died and zero otherwise and
\(x_i \) is the birth order of the child. Once \(a \) and \(b \) have been estimated, using standard statistical procedures (such as regression), we could use the equation to predict the probability \(\hat{p}_j \) that the \(j \)th child died \((\hat{p}_j = \hat{a} + \hat{b}x_j)\). We could also predict the average probability of dying if the average birth order of the sample, for example, was 3. In this simple model, \(\hat{p} \) would then equal \(\hat{a} + \hat{b}(3) \). We could further estimate the change in \(\hat{p} \) that would result from reducing average birth order from 7 to 3. Clearly, all these results depend both on the values of the estimated parameters \(\hat{a} \) and \(\hat{b} \) and on the magnitude of the hypothesized change in the independent variable, \(x \). In the calculations that follow, we consider precisely this type of change, except that the prediction equations are more complex than the linear function shown above and include several independent variables.

Results from this type of calculation using equations from Martin et al. [1983] and Trussell and Hammerslough [1983], shown in Table 3, indicate that the children of young mothers (<20 years of age) suffer much higher mortality than the children of older mothers. In this and subsequent tables, the proportionate changes indicate how much mortality rates would change if independent variables were changed from their present values to new hypothetical values. Hence, the results shown are relative to actual values of the independent variables in the samples. To determine how much change would occur if explanatory variables were altered from one hypothetical distribution to another, a simple calculation is required. For example, if all births\(^9\) in Sri Lanka occurred to women under 20, infant mortality would rise by 22 percent, as shown in Table 3, and if all births
TABLE 3. Effects of Changing Maternal Age (A) at Birth and Birth Order (BO) on l_0 and q_1.

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>Source</th>
<th>Reference l_0</th>
<th>Reference q_1</th>
<th>Effect of changes in percent a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$A<20$</td>
<td>$A=20-34$</td>
<td>$A>35$</td>
</tr>
<tr>
<td>Pakistan</td>
<td>3</td>
<td>130</td>
<td>077</td>
<td>-5</td>
</tr>
<tr>
<td>Indonesia</td>
<td>3</td>
<td>106</td>
<td>081</td>
<td>-6</td>
</tr>
<tr>
<td>Philippines</td>
<td>3</td>
<td>055</td>
<td>012</td>
<td>-2</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>4</td>
<td>055</td>
<td>024</td>
<td>-5</td>
</tr>
</tbody>
</table>

a. Values of all other variables held constant at means. Only changes in l_0 presented; changes in q_1 differ slightly.

b. Births at orders 4 and higher are distributed proportionately to the categories birth order = 1 and birth order = 2 and 3.

c. Source: 3) Martin et al., [1983], 4) Trussell and Hammerslough [1983].
occurred to women 20-34, infant mortality would fall by five percent. Hence, if we moved from a situation where births occurred only to women under 20 to another circumstance in which births occurred only to women 20-34, infant mortality would fall by \(1-\frac{.95}{1.22}=22.1\%\) percent. Though the prime reproductive ages are generally considered to be between 20 to 34, the hazard model results reported in the original paper for Pakistan and Indonesia indicate that children of older women (35+) have lower mortality than the children of women in these "prime" reproductive ages. Only in Sri Lanka does the expected U-shaped pattern with respect to age emerge. In all four countries, the estimated effect of eliminating childbearing before 20 and after 34 is relatively small (averaging roughly five percent) because most childbearing is already concentrated in this age span, so moving the remainder of births to this maternal age range has little effect on overall child mortality. Furthermore, as mentioned above, only in Sri Lanka does eliminating childbearing above age 35 have a net positive impact on the level of child mortality.

In fact, the mortality impact of changes in maternal age due to an increase in contraceptive use is likely to be even smaller than indicated by the estimates shown in Table 3. The reason is that while the fraction of children born to old mothers is likely to decline, the under-20 fraction of childbearing is not in most countries. It is this under-20 fraction that contributes most to the small impact shown in Table 3. Increases in age at first birth and reductions in teenage fertility are likely to result only from changes in age at marriage accompanying general socioeconomic development and changes in the status of women.
The estimated impact on child mortality of stopping childbearing at three children is also shown in Table 3. On average across the four countries, child mortality rates would be lowered by eight percent if higher order births were eliminated. The estimated effect of both concentrating childbearing in the age range 20-34 and eliminating births beyond the third is shown to be approximated very closely by simply summing the separate effects; on average, mortality would decline by 12 percent. Since the role of family planning in helping couples to reduce higher order births is well documented, there is likely to be more of an impact on mortality from increased contraceptive use through reducing parity than through lowering maternal age at birth. As discussed earlier, this parity effect may be large by a spacing effect in disguise.

Hobcraft et al. [1983], Holland [1983], and Cleland and Sathar [1983], have shown that birth spacing has a large impact on child mortality. In Table 4, we consider the impact on l_{q_0} and l_{q_1} of changing spacing patterns in three ways. In this table, the convention proposed by Hobcraft et al. is used: spacing patterns are represented by the format $SZ.L$; S denotes the number of children born 2-6 years before the index child, Z denotes the number born 0-2 years before the index child, and L denotes the number born 0-17 (if estimating l_{q_1}) or 0-29 (if estimating l_{q_2}) months after the birth of the index child. The patterns we examine are $SZ.L=10.0$, 11.0, and 21.1+. In words, these three patterns are: 1) 10.0 = only one sibling born within 2-6 years before the index child, and none born 0-2 years before or 0-17 (or 0-29) months after; 2) 11.0 = one born 2-6 years before, one born 0-2 years before, and none born 0-17 months after; and 3) 21.1+ = two born 2-6 years before, one born 0-2 years before, and at least one born
TABLE 4. Effects of Changing Spacing Patterns on $1q_0$ and $4q_1$.

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>Reference Value b</th>
<th>$1q_0$ % change if all births spaced a</th>
<th>$4q_1$ % change if all births spaced a</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Africa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senegal</td>
<td>120</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Lesotho</td>
<td>132</td>
<td>2</td>
<td>-7</td>
</tr>
<tr>
<td>Kenya</td>
<td>095</td>
<td>-25</td>
<td>-15</td>
</tr>
<tr>
<td>Sudan</td>
<td>076</td>
<td>-28</td>
<td>-9</td>
</tr>
<tr>
<td>Ghana</td>
<td>075</td>
<td>-30</td>
<td>-16</td>
</tr>
<tr>
<td>Americas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haiti</td>
<td>147</td>
<td>-23</td>
<td>-6</td>
</tr>
<tr>
<td>Peru</td>
<td>107</td>
<td>-27</td>
<td>4</td>
</tr>
<tr>
<td>Ecuador</td>
<td>085</td>
<td>-23</td>
<td>-9</td>
</tr>
<tr>
<td>Mexico</td>
<td>075</td>
<td>-22</td>
<td>-5</td>
</tr>
<tr>
<td>Colombia</td>
<td>068</td>
<td>-28</td>
<td>4</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>071</td>
<td>-33</td>
<td>8</td>
</tr>
<tr>
<td>Guyana</td>
<td>055</td>
<td>-24</td>
<td>6</td>
</tr>
<tr>
<td>Panama</td>
<td>044</td>
<td>-11</td>
<td>-9</td>
</tr>
<tr>
<td>Jamaica</td>
<td>041</td>
<td>-5</td>
<td>5</td>
</tr>
<tr>
<td>Asia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal</td>
<td>168</td>
<td>-27</td>
<td>-9</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>136</td>
<td>-23</td>
<td>-2</td>
</tr>
<tr>
<td>Pakistan</td>
<td>130</td>
<td>-23</td>
<td>-18</td>
</tr>
<tr>
<td>Indonesia</td>
<td>106</td>
<td>-24</td>
<td>-6</td>
</tr>
<tr>
<td>Thailand</td>
<td>079</td>
<td>-28</td>
<td>-19</td>
</tr>
<tr>
<td>Jordan</td>
<td>069</td>
<td>-37</td>
<td>-6</td>
</tr>
<tr>
<td>Syria</td>
<td>067</td>
<td>-31</td>
<td>-25</td>
</tr>
<tr>
<td>Philippines</td>
<td>055</td>
<td>-23</td>
<td>22</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>053</td>
<td>-10</td>
<td>7</td>
</tr>
<tr>
<td>Korea</td>
<td>043</td>
<td>-26</td>
<td>-19</td>
</tr>
<tr>
<td>Malaysia</td>
<td>043</td>
<td>-13</td>
<td>-2</td>
</tr>
</tbody>
</table>

a. Spacing is defined by the notation $SZ.L$, where S = number of previous births 2-6 years before index child, Z = number previous births 0-2 years before index child and L = number subsequent births 0-17 months for $1q_0$ or 0-29 months for $3q_2$ after birth of index child.

b. See Table 1, footnote c, for description.

c. Calculated from Hobcraft et al. [1983].
0-17 months after. Of the three, the first, SZ.L=10.0, is expected to be the most favorable, and 21.1+, the last, the least favorable by far. The results generally bear out these expectations: as we move across the rows labeled 10.0, 11.0 and 21.1+, the percent change generally rises, indicating successively higher mortality. Moreover, switching universally to the "ideal" pattern SZ.L=10.0, implying a prior birth interval of at least two years, would lower l_0 in all but two countries (Senegal and Lesotho) and would lower $4q_1$ in all but five countries (Senegal, Haiti, Panama, Jamaica, and Malaysia).

The variation across countries in the estimates in Table 4 is mainly mechanically caused by differences in the parameter estimates in the original study; instability in the parameter estimates reflects primarily small sample sizes in many of the covariate categories. Other sources of variability in the parameter estimates are differences in data quality across country and in the extent of date imputation in the data. (see Trussell, 1984) Fortunately, we do not have to rely on estimates from a single country. Instead, we can examine the distribution of estimates generated for many populations. These distributions are displayed in Figure 1, using box plots.

Examination of these box plots confirms our expectation that the spacing pattern 10.0 is superior to 11.0 which in turn is superior to 21.1+. These estimates indicate that if all births were spaced in the "ideal" pattern (10.0), the median reductions in l_0 and $4q_1$ would be 24% and 13%, respectively.

These results are misleading, however, for at least three reasons. First, it is logically impossible for all births to have the ideal spacing pattern of one birth 2-6 years before and no births 0-2 years before.
Obviously, first births could not. Thus, our ideal spacing pattern applies only to second and higher order births. For first births, SZ by definition would equal CO and L would ideally equal 0. Hence, the ideal pattern for first births would be $SZ.L = 00.0$. Figure 1 shows that if first births and subsequent births each were ideally spaced, then q_0 would be reduced by an average across countries of 10 percent and q_1 by an average of 21 percent. Because first births cannot be explicitly distinguished from higher order births in the Hobcraft et al. study, however, the predicted mortality rate for first births is likely to be biased. Examination of the results convinces us that the estimates of mortality for first births are biased upward and therefore the estimated changes in overall mortality resulting from the adoption of the ideal spacing pattern are biased downward.

Even with this adjustment, it would be highly optimistic to believe that changing spacing patterns alone, for example through the use of contraception, would have an effect of this magnitude. The reason is that these "child spacing effects" are almost certainly due, in part, to the effects of breastfeeding in both delaying resumption of menstruation and improving child health. A spurious spacing effect would result if a woman tends to breastfeed each of her children for the same length of time. Then, a short prior interval reflects early weaning of the prior child which in turn is associated with early weaning of the index child. Lengthening birth intervals through breastfeeding would have a greater positive impact on child survival than would increasing birth intervals through contraceptive use, other things being equal.
Figure 1. Percentage Change in q_0 or q_1 Induced by a Change in Spacing Patterns to SZ.L

The dot indicates the median; the solid lines extend from the quartiles to the eighths.

a. Spacing is defined by the notation SZ.L, where S = number of previous births 2-6 years before index child, Z = number previous births 0-2 years before index child and L = number subsequent births 0-17 months for q_1 or 0-29 months for q_2 after birth of index child.

b. In the ideal pattern, first births have the ideal pattern 00.0 and subsequent births have the ideal pattern 10.0.
Hence, it is important to establish whether spacing effects persist after the effects of breastfeeding of the index child are controlled. Cleland and Sathar provide a partial answer. Because of the coding of age at death in the Pakistan survey and imprecision of retrospective breastfeeding reports, it is impossible in most cases to decide whether termination of breastfeeding was caused by death or vice versa. Therefore, Cleland and Sathar could control for breastfeeding only when analyzing mortality after the first year. They present results only for early child mortality and conclude that the negative association between birth interval length and lq_1 cannot be explained by the timing of weaning.

Holland used a different methodology in his Malaysia study and the coding of age at death was more precise in the MFLS. As a consequence, the difficulty in separating cause and effect in the weaning/death association was largely eliminated. He found that previous interval length was negatively related to lq_0 even when the effect of breastfeeding was controlled. If breastfeeding duration is held constant but short prior birth intervals are eliminated, the estimated change in lq_0 is a reduction of 16 percent. In comparison, the estimate implied by the Hobcraft, et al., study for Malaysia is a reduction of lq_0 by 9.3 percent (not shown), after allowing for first births. Although we might have expected the Hobcraft, et al., study to produce a larger estimated reduction since the effects of breastfeeding are not controlled, the two studies are not directly comparable because they employ different data sets and different specifications of spacing effects.

Even the Holland estimate, however, is potentially biased. When a breastfeeding child dies, ovulation is likely to resume more quickly. In
the absence of contraception, the consequence would be a more rapid next conception. Some short prior intervals are likely to be caused by the death of the previous child. The death of the index child is more probable if the previous child died. Thus, the childspacing variable may be spuriously capturing an intra-family correlation in the propensity for children to die. To avoid this potential bias, the survival status of the previous birth must be controlled. Cleland and Sathar found a strong spacing effect regardless of whether the preceding child survived for two years or died before the age of two. They did not, however, control simultaneously for the survival status of the preceding child and breastfeeding of the index child. They estimate that the universal adoption of the "ideal" spacing pattern discussed above would reduce l_{g0} by 15 percent in Pakistan. Unfortunately, it is not clear whether the effects of any confounding variables were controlled or how first births were handled in this calculation.

Producing a "best" estimate of the mortality reducing impact of adopting the "ideal" spacing pattern is difficult. No single study has controlled for all obvious confounding variables simultaneously. The estimates from the Hobcraft et al. study are probably slightly overstated because they do not control for the effects of breastfeeding and survival of the previous child, but they are likely to be understated because the estimated mortality rates of first births are probably exaggerated. These two effects will, on average, tend to compensate for each other. Hence, our preferred estimate is the median change for the 25 countries in the Hobcraft, et al., study; if all births are spaced at least two years apart, we might expect reductions in l_{g0} by 10 percent and in q_{g0} by 21 percent.
TABLE 5. Changes in the maternal mortality ratio resulting from hypothetical changes in the maternal age and parity distribution of live births.

<table>
<thead>
<tr>
<th>Maternal mortality ratioa</th>
<th>Percent reduction (b)</th>
<th>Maternal mortality rate if birth rate is constant</th>
<th>Percent reduction (c)</th>
<th>Percent reduction (d)</th>
<th>Maternal mortality rate if GFR declines by 25% (e)</th>
<th>Percent reduction (f)</th>
<th>Overall mortality rate for women of reproductive age if GFR declines by 25% (g)</th>
<th>Percent reduction (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A] Observed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.7</td>
<td></td>
<td>0.7</td>
<td>22.2</td>
</tr>
<tr>
<td>[B] Eliminating births under 20 and over 39, c and ignoring parity distribution</td>
<td>4.9</td>
<td>14.0</td>
<td>0.8</td>
<td>11.1</td>
<td>3.3</td>
<td>2.9</td>
<td>0.6</td>
<td>33.3</td>
</tr>
<tr>
<td>[C] Eliminating births to women above parity 5, ignoring aged distribution</td>
<td>5.5</td>
<td>3.5</td>
<td>0.9</td>
<td>0.0</td>
<td>3.4</td>
<td>0.0</td>
<td>0.7</td>
<td>22.2</td>
</tr>
<tr>
<td>[D] Eliminating births under 20 and over 39, with commensurate change in parity distribution</td>
<td>5.1</td>
<td>10.5</td>
<td>0.8</td>
<td>11.1</td>
<td>3.4</td>
<td>0.0</td>
<td>0.6</td>
<td>33.3</td>
</tr>
<tr>
<td>[E] Eliminating births under 20 and over 39 as above, and eliminating births to women above parity 5.</td>
<td>4.5</td>
<td>21.1</td>
<td>0.7</td>
<td>22.2</td>
<td>3.3</td>
<td>2.9</td>
<td>0.6</td>
<td>33.3</td>
</tr>
</tbody>
</table>

a Based on results from Matlab Thana, Bangladesh in Chen et al. (1977), Table 9
b Number of maternal deaths per 1000 live births.
c Based on marginal distribution of age only.
d Based on marginal distribution of parity only.
e Assumes arbitrarily that all of births occurring at ages 10-19 and one-half of the births occurring at 20-29 in the original distribution now occur at ages 20-29, and that one-half of the original 20-29 births and all births at ages 30-49 now occur at ages 30-39.
f Relative to the first element in Column (3)
g Relative to the first element in Column (5)
Maternal Mortality

To estimate the size of a change in maternal mortality which would result from a hypothetical change in the age and parity distribution of births, we use maternal mortality ratios and distributions of live births by maternal age and parity from the Chen et al. study [1974]. In the first column of Table 5, we show changes in maternal mortality ratios which might occur in four hypothetical situations, plus the ratio which was actually observed in the Matlab population. In each case, we have altered the observed distribution of live births by maternal age and/or parity and then used the age and parity distribution of maternal mortality ratios for the Matlab population to calculate new ratios. In Row B, we change the maternal age distribution of live births by eliminating all births to women under 20 and over 39. In this case, we ignore the fact that the age and parity distributions of births are closely linked in this and other populations. Therefore, the figure 4.9 maternal deaths per 1000 live births is calculated from the proportions of live births to women 20-29 and 30-39 and the ratios for these two age groups. In this case, the reduction in the maternal mortality ratio would be 14 percent.

Next, we consider the analogous exercise for parity: elimination of births at parities 6 and above, ignoring any interaction between maternal age and parity. For convenience, the rates for primagravida and 0-1 multigravida in Table 2 are combined into a single rate. This change in the parity distribution reduces the maternal mortality ratio to 5.5, for a reduction in mortality of only 3.5 percent. Eliminating all births beyond the third parity also has little effect in this population: the ratio (not
shown) in this case is 5.6 deaths per 1000 births, or a reduction of only 1.8 percent. The reason is that maternal mortality is greatest in the 0-1 parity group, and simply redistributing births away from the higher parity groups shifts proportionately more into the high risk 0-1 parity.

Clearly, it is unrealistic to pretend that the distributions of births by maternal age and parity are unrelated. For example, among 10 to 19 year-olds, there are likely to be more first births than higher order births. Since maternal mortality is related to both age and parity, and, most probably, to their interaction, it is important to consider how the parity distribution of births by age might change if we eliminate births at youngest and oldest ages. In Row D we have, therefore, calculated the maternal mortality ratio eliminating births under 20 and over 39 and rearranging the parity distributions for the age groups 20 to 29 and 30 to 39 as described in Table 5 to compensate for the change in age distribution. The redistribution procedure chosen is arbitrary, and other methods may yield slightly different results. As might be expected, the amount of reduction in maternal mortality resulting in this case is somewhat less than that resulting from eliminating births at youngest and oldest ages alone. Over all, the reduction expected would be approximately 11 percent.

Finally, in Row E we take the age-parity distribution of live births in Row D and eliminate all births at parities 6 and above. The effect is to reduce the maternal mortality ratio further from 5.1 to 4.5. Thus, if no births occurred in this population below age 20 and above age 39 and there were no births beyond parity 6, the maternal mortality ratio might
drop from 5.7 reported by Chen et al. to something like 4.5, a decline of 21 percent.

In the last eight columns of Table 3, we consider the impact of these changes in the maternal mortality ratio on the maternal mortality rate (maternal deaths per 1000 women 15 to 49) and the total death rate for women of reproductive ages. The maternal mortality rate as used here is the product of the maternal mortality ratio and the general fertility rate (GFR)—the number of live births per 1000 women of reproductive age. Obviously, if fewer women are exposed to pregnancy in a given period, the maternal mortality rate will be lower. The effects of our four changes in the age and parity distribution on the maternal mortality rate are evaluated in two ways. First, we consider the unlikely circumstance in which the age and parity distribution of live births changes but the GFR remains constant. Second, we assume that the changes in age and parity distribution of live births result in a 25 percent decline in the GFR. In this case, the maternal mortality rate in column 7 is simply 75% of the rate in column 3. As is clear in Table 5, changes in the age/parity distribution of live births and in their number may have an important but generally small impact on the fraction of women of reproductive ages who die. The largest effect, which comes from eliminating births below 20 and above 39 and to women at parity 6 and above while the GFR is reduced by 25 percent, is a reduction in the maternal mortality rate by a third. The overall mortality rate for women of reproductive ages in this population would change from 3.4 per 1000 to 3.2, for a reduction of about 6 percent.
IV. Actual Impact of Family Planning Programs

As is apparent from the previous sections, to determine how much of an impact a change in reproductive behavior (induced perhaps by a family planning program) might actually have on mortality, we need to know how the change would affect the maternal age, parity, and birth interval distributions of live births.

For illustrative purposes, we have attempted to make some reasonable guesses about the types of changes which might take place: higher order births and short birth intervals would be less common, women would be less likely to have births below the age of 20 and after their thirties, and fertility would decline. It is important to bear in mind that although these are changes that may reflect the goals of a family planning program, whether or not they would actually occur in a particular country is another matter. For example, it is unlikely that a family planning program will reduce the number of births occurring to women under 20 unless there is also an increase in the age at marriage. Even if contraceptives were made widely available to young, newly married women, very few might want to delay their first birth.

To obtain a more realistic picture than provided in this paper of the impact of a family planning program on mortality, we need to know not only what type of changes in reproductive behavior may take place, but also the magnitude of those changes. In other words, rather than assuming all births at birth orders 5 and above are eliminated, we would like to know what proportion of births would occur at each birth order.
There are two ways in which we might attempt to determine how the
distribution of births by maternal age, parity, and birth spacing would
actually change. First, we might compare the distribution of births at two
or more periods of time in countries which have implemented successful
family planning programs. Such a comparison could in principle be readily
made using maternity history data from surveys at different points in time.
The major problem with this approach is that it would be nearly impossible
to attribute the observed changes solely to the activities of the family
planning program, as the continuing debate about the relative roles of
family planning programs and economic and social development in reducing
fertility suggests [Lapham and Mauldin, 1984].

A second approach would be to use a simulation to determine what
effect a family planning program, or more generally, increased
contraceptive use, would have on the distribution of births by maternal
age, parity, and birth spacing occurring each year. Through simulation, we
could assess the potential impact of a family planning program in a
population rather than in documenting what has happened in the past. Two
types of simulations have been developed for answering exactly this type of
question. The first group are macro-simulations, such as TABRAP and
CONVERSE [Nortman et al., 1978], designed to project a population, with
annual variations in fertility depending on the number of new contraceptive
acceptors and the rate at which contraceptive use is discontinued. These
simulations are usually based only on age-specific fertility calculations,
and therefore they cannot provide the necessary information about resulting
parity distributions or birth spacing. The second group are micro-
simulations or family building models, such as POPSIM and POPREP
[Lachenbruch, Sheps and Sorant, 1973; Horvitz et al., 1971]. These programs simulate actual maternity histories of individual women in a population using Monte Carlo techniques. Although they are fairly complicated and expensive to use, they have the potential of producing the type of results we need.

The obvious difficulty with using simulations is that it is necessary to make assumptions about the way in which contraceptive use diffuses throughout a population and how effectively couples who adopt contraception will use it. While there is considerable research concerning the impact of family planning programs on the level of fertility (see, for example, Mauldin [1982], Mauldin and Berelson [1978], and Lapham and Mauldin [1984], we know considerably less about how the implementation of family planning programs actually alters reproductive behavior. Furthermore, there is undoubtedly substantial intercountry variation in the way in which a program affects fertility. For example, in the Republic of Korea and in Taiwan, China, fertility rates started to decline first among older women, but in Costa Rica, the fertility decline began among younger women [Stycos, 1982]. Thus, while the estimates of changes in a population's fertility pattern generated by a simulation may be more realistic than the changes we have considered, they would still depend heavily on the assumptions made about the implementation and effectiveness of a family planning program.
V. Summary and Conclusions

In this paper, we have discussed several mechanisms by which widespread adoption of contraception could lower infant, child, and maternal mortality. We have also generated quantitative estimates that show how much mortality in developing countries would be reduced under hypothetical changes in the distributions of maternal age at birth, birth order, and birth spacing patterns. Our results indicate that if childbearing were confined to the "prime" reproductive ages 20-34, the infant and child mortality rate would fall by about five percent. Limiting childbearing to ages 20-39 could reduce the maternal mortality ratio by about 11 percent. Eliminating fourth and higher order births would reduce infant and child mortality by about eight percent. The maternal mortality ratio would decline by about four percent if fifth and higher order births were eliminated. Simultaneously, eliminating fourth and higher order births and confining childbearing to ages 20-34 would reduce $1q_0$ by 12 percent.

Alternatively, an improvement in birth spacing patterns, so that all births subsequent to the first are spaced at least two years apart, is estimated to reduce $1q_0$ by an average of 10 percent and $4q_1$ by an average of 21 percent among the 25 countries studied. Hence, improving birth spacing patterns and eliminating births to women at highest risk ages and parities are expected to lower mortality by approximately the same amount. Unfortunately, we are unable to estimate the combined effect of changing age, parity and birth spacing simultaneously because there are no studies that report results when all three factors are included in the same multivariate model.
Thus, there is definite potential for reducing infant, child, and maternal mortality through increased use of contraception. Whether or not family planning programs can effect the types of changes in behavior discussed in this paper is another matter. We discuss problems in estimating likely effects of family planning programs in reproductive behavior but do not attempt to resolve them.

In absolute magnitude, the potential effects on infant and child mortality of changing fertility patterns appear to be modest, though certainly important. We can apply the same methodology to estimate the effect on infant and child mortality of raising levels of maternal education in order to assess relative magnitudes. In the 25 countries included in the comparative study by Hobcraft et al. [1983], giving all mothers 7 or more years of education is estimated to lower q_0 by an average of 41 percent and q_1 by an average of 60 percent, other things equal. In the more intensive studies by Martin et al. [1983] and Trussell and Hammerslough [1983], in which the effects of a much larger number of socioeconomic variables are controlled, the implied reduction in q_0 is still large, averaging 25 percent for Indonesia, Pakistan, the Philippines, and Sri Lanka.

It would appear, therefore, that educating girls lowers mortality to a greater extent than altering reproductive behavior. The costs of reducing mortality through female education or implementing family planning programs would surely differ. Reducing infant and child mortality, however, is not the primary rationale for either type of social intervention. Nevertheless, our results indicate that either approach may have the side effect of lowering mortality.
NOTES

1 For reviews of this literature, see Nortman, 1974; Gray, 1981; Omram, 1976 and 1981; Wray, 1971, and Winikoff, 1983.

2 It is also possible that a family planning program emphasizing oral contraceptives may increase infant and child mortality. The use of the pill appears to reduce the quantity of breastmilk a woman can produce, although it is less certain whether there is any change in the quality of the milk [Hull, 1981]. Because breastmilk is important to the survival of infants in many developing countries, a reduction in breastmilk due to pill use could result in increased mortality. However, results from the World Fertility Survey indicate that, even in developing countries with large fractions of women using the pill, there is very little overlap between pill use and lactation [Pebley, et al., 1982].

3 The real effect of parity may, in fact, not be an entirely biological effect, but may also represent competition for limited resources.

4 Maternal mortality is generally measured in two ways: 1) the maternal mortality ratio relates deaths due to maternity-associated causes to the number of live births; 2) the maternal mortality rate relates these deaths to the number of women of reproductive age.
Another important effect of a family planning program on maternal mortality is the reduction of mortality resulting from induced abortions (see, for example, Rochat et al., [1981]). If women who want to avoid pregnancy adopt contraception, they are far less likely to have to resort to abortion (often available only under unsafe conditions in developing countries). We do not attempt to estimate directly the amount of maternal mortality caused by abortions which may be eliminated by contraceptive use, since it is virtually impossible to obtain adequate data on induced abortion in many countries.

Each birth is assigned to one of five categories: (1) first; (2) second or third, short prior interval; (3) second or third, long prior interval; (4) fourth or higher, short interval; or (5) fourth or higher, long interval.

The symbol q_x is defined as the probability of dying between exact ages x and $x+n$.

These variables are held constant sequentially, or in groups, but not simultaneously.

Note that only the distribution of births across the categories of the independent variables, not the absolute number of births, affects the estimated mortality rates.
We do not mean to indicate by our choice of the word ideal that even longer intervals would not yield lower mortality. The evidence on this point is mixed. Hobcraft, et al., originally had divided the period two to six years before the survey into two subintervals, two to four and four to six years. On the basis of exploratory work, they concluded that their models fit no better with the more complicated specification. The implication is that spacing births more than four years apart does not result in any further reductions in mortality. The Hobcraft et al., study is silent on the question of whether spacing births three to four years apart is superior to spacing them two to three years apart. Cleland and Sathar, however, found that for neonatal mortality, there appears to be a threshold of about three years, above which no further advantage is conferred on the index child. For post-neonatal and early child \(q_0 \) mortality, an approximately linear decline occurs up to four years. Note that our definition of the "ideal" spacing pattern allows only one birth in the four-year interval two to six years before the birth of the index child. Hence the implied spacing pattern is really a birth every four (not two) years.

The median of the distribution is plotted as a single dot. The lines on either side of the median extend from the quartiles to the eighths. Fifty percent of the observations lie above, and fifty percent lie below, the median. One fourth and one eighth of the observations, respectively, lie above (below) the upper (lower) quartiles and eighths.
In these calculations, we assume that one-sixth of births are first births, since the exact distribution of births by birth order is unavailable (see the Appendix). Thus, we compute the expected change as 5/6 of the change if all births were spaced $SZ.L = 10.0$ plus 1/6 of the change if all births were spaced $SZ.L = 00.0$. In every case, the change to $SZ.L = 00.0$ raises $1q_0$, but in all except three countries lowers $4q_1$. As a consequence, the overall change, when first births are explicitly included, is smaller for $1q_0$ than the corresponding figure in Table 4 but larger for $4q_1$. Note that births with a spacing pattern of 00.0 include two very different groups: first births and higher order births with extremely long prior interbirth intervals. There is some evidence that the latter group experiences higher mortality than the former.

It is important to note that Chen et al. do not control for potentially confounding variables, as the child mortality analyses in the last section do. Thus, the assumption that Chen et al.'s figures represent coefficients of causal relationships may be less tenable than in the case of the child mortality studies. Nevertheless, these are the only such data available.

The change is instantaneous. The women in Matlab Thana are assumed simply to have had 25 percent fewer births during the two-year observation period.
Because maternal mortality is likely to be underreported, even in the Matlab population, the effect may well be larger than our estimates indicate.
Two measures of childhood mortality are used in this paper, \(l_{q_0} \) and \(l_{q_1} \). To calculate these rates -- either for the actual sample or for a hypothetical population -- we use estimated parameters and a set of average characteristics from each study. In the models on which our results are based, mortality rates are nonlinear functions of these parameters and the distributions of these characteristics in the sample. The set of parameters can be divided into two subsets, consisting of the set of coefficients of the independent variables (hereafter denoted by the vector \(\beta \)) and other parameters (hereafter denoted by the vector \(\alpha \)). The purpose of the original papers was to estimate the values of \(\beta \) and \(\alpha \) given information on the covariates such as age, education of the mother, birth order and sex of the infant. We, on the other hand, want to predict the probability of dying for various hypothetical values of the covariates or independent variables (hereafter denoted by the vector of characteristics \(X \)), given the estimated parameters. In symbols, \(n_x q_x = f(\beta'X, \alpha) \), where \(n_x q_x \) is the predicted probability of dying between exact ages \(x \) and \(x+n \); \(\beta'X \) is the linear combination of the covariates, each multiplied by its estimated coefficient; and \(\alpha \) is the vector of other parameters estimated in the model. Because different statistical procedures are used, we describe the calculation of \(l_{q_0} \) and \(l_{q_1} \) separately for each study.
Martin et al. [1983] and Trussell and Hammerslough [1983] both use a hazards model approach, described in detail by Trussell and Hammerslough [1983]. Both studies use the same age categories, of which only the first six (through age five) are needed for our calculations. We denote the set of covariates by the vector X and the associated parameter estimates, including the intercept, by the vector β. The symbols $\alpha_1, \alpha_1, \ldots, \alpha_6$, denote the age parameters and the width, in years, of each category. Then,

\begin{align*}
1q_0 &= 1.0 - \exp\left(-\left(w_1e^{\alpha_1} + w_2e^{\alpha_2} + w_3e^{\alpha_3} + w_4e^{\alpha_4}\right)e^{\beta'X}\right) \quad (A1) \\
\text{and} \quad 4q_1 &= 1.0 - \exp\left(-\left(w_5e^{\alpha_5} + w_6e^{\alpha_6}\right)e^{\beta'X}\right). \quad (A2)
\end{align*}

The values of w_1, w_2, \ldots, w_6 in these studies are $1/12, 2/12, 3/12, 6/12, 1,$ and 3. Values of β are taken from Table 3 of Trussell and Hammerslough and Tables 1, 2, and 3 of Martin et al. Our calculations consisted of substituting in a set of X values and, using the parameter estimates from the original studies, solving the equations for q_X.

Holland [1983] also used hazards models, but estimated separate equations for each of four sub-intervals in the first year, so that there are four sets of β's, denoted β_k, $k=1, 2, 3, 4$. Since his analysis is limited to infant mortality, only $1q_0$ can be calculated.

\begin{align*}
1q_0 &= 1.0 - \prod_{k} \exp\left(-w_ke^{\beta_k'X}\right) \quad (A3)
\end{align*}
Because exposure is measured in months (not years), the values of \(w_k \) are 2, 2, 3, and 5. The values of \(\beta_k \) are taken from Holland's Table 17.

Hobcraft et al. [1983] used probability models, not hazard models, so the equations are simpler. See Hobcraft et al. for further details. There are four separate equations for neonatal, post-neonatal, toddler, and child mortality. The associated parameter vectors are denoted \(\beta_k \), \(k=1, 2, 3, 4 \).

\[
\begin{align*}
1q_0 &= 1.0 - (1.0 - e^{\beta_1 x}) (1.0 - e^{\beta_2 x}) \\
4q_1 &= 1.0 - (1.0 - e^{\beta_1 x}) (1.0 - e^{\beta_4 x})
\end{align*}
\]

(A4)

(A5)

Values of \(\beta \)'s were supplied by John McDonald of WFS. Exponentiated \(\beta \)'s are shown in Tables 3, 4, 5, and 6 of Hobcraft et al.

Evaluating the effect of a change in the characteristics of a population on \(1q_0 \) and \(4q_1 \)

We are interested in assessing what would happen to \(1q_0 \) or \(4q_1 \) if certain characteristics of births in a population were changed. For example, other things equal, what would happen to predicted mortality rates if all women had 7+ years of education. To carry out this calculation, we need to know the distribution of characteristics before and after the change. To get the predicted rate before the change, we should calculate
the predicted rate for each cell in the covariate matrix and then find the weighted average, where the weights are the fractions of births in each cell in the covariate matrix.

We do not, however, have the proportions in the covariate matrices. In fact, there are approximately 500,000 cells in some of these matrices. We only have the marginals, which are printed in the various studies. Hence, we are forced to evaluate the predicted mortality rate for a baby with average characteristics. We do this calculation by substituting \bar{X} for X in the equations above. The overall level predicted by the equations will not be the correct one, since the functions are highly nonlinear (the function of an average is not the average of functions) and since (having only the marginals) we in effect must assume that all covariates are uncorrelated. Even though levels are incorrect, however, implied proportional changes caused by substituting a hypothetical distribution (say, X^*) instead of \bar{X} are generally close to the answers that would be obtained in the correct manner. Econometricians have recognized this property in logit and tobit regressions; the predicted Y when the X's are set at their means is not \bar{Y} (as it would be with OLS), but the derivatives with respect to the parameters, estimated at the means of the X's, are generally close to the OLS parameter estimates. When we tried adjusting the constants to give the correct level, the implied proportional changes (when X^* was substituted for \bar{X}) were nearly identical to those obtained without adjusting the constants. Hence, we are confident that the implied proportional impacts that we estimate are reasonably accurate.

Of far more concern is the fact that we do not have the appropriate \bar{X}'s, except for the Hobcraft et al. study. Hobcraft et al. estimated their
models on a sample consisting of all births 5 to 15 years before the WFS survey, and the marginals for covariates are available. The other three studies, however, have a sample of all births to women in the surveys. Thus, the marginals do not refer to any period. For example, since the surveys pertain to women 15-49 at the time of the survey, births to older women are grossly under-represented and those to younger women are over-represented (relative to what a distribution of births in a given period would be) since all women can contribute births when young but only a few when old. Means of almost all covariates, calculated from the marginals, are distorted and thus require adjustment before we can determine how the mortality rate would change if the X's change. Information on the current period is clearly unavailable. We could, in principle, get the characteristics of births near the time of each WFS survey, but most of these surveys were conducted 5-10 years ago. Since the Hobcraft et al. means do apply to a particular period, they are not distorted by sample selection bias. The means, however, pertain to a period on average more than 15 years ago. Though in principle we could obtain means for a time closer to the present from the WFS standard recode files, in fact we have access only to a few of those used in these studies.

Thus we were forced to resort to cruder adjustments. The means for the Hobcraft et al. study were not adjusted. For the other studies we adjusted only the maternal age and birth order means because these were the variables we altered when assessing the potential effects of family planning on mortality. Adjustment of the means of other variables would have far less impact on our estimates because they remain constant throughout. Maternal age distributions were adjusted by estimating the
births for age groups of women during the three years before the survey, with age-specific fertility rates taken from Hannenberg [1980] and number of women married and proportion married taken from Goldman and Hobcraft [1982]. The distribution of births by birth order (one, two-three, four+) was much harder to adjust, since data on the distribution of births by birth order have seldom been published by WFS. Some of the evaluations of individual WFS Surveys include total fertility rates, total first birth rates, and total fourth-and-higher birth rates. These reports indicate that during the five years before the surveys, first births constituted about 14 percent of births when the TFR was high (~5.5) and about 18 percent when the TFR was lower (~4.5). The proportion of second- and third-order births was generally about twice the proportion of first order births. Information for Malaysia was available directly from Yatim [1982], and indicates a distribution split 17 percent for first births; 30 percent for second and third births; and 53 percent for fourth and higher order births. Based on these findings, we split the births in the Philippines and Indonesia in the proportions 18/36/46, in Pakistan in the proportions 14/28/58, and in Sri Lanka 20/40/40. These latter estimates almost certainly are not correct, but they are equally certain to be better than those "observed" from the entire sample. For example, in the Malaysian Survey used by Holland, the births were split 20/17/63.* Within each parity for Malaysia, the observed distribution of births by short and long prior birth intervals was not adjusted since there was insufficient information.

* This result seems quite implausible, but it is the one reported.
REFERENCES

This type of sharing enhances the depth of understanding that came from the lives of villagers. The project, which focused on 150 people by the end of the project, expanded to 26 villages in Punjab, India. The research covered the period from 1967 to 1974 and aimed to explore the purposes underlying the research in this area; and it proposes policy questions regarding the effectiveness, efficiency, and equity of such an integration.

Volume II. Integrated Family Planning and Health Care
Carl E. Taylor and others
To village people, politicians, and international health planners, health and family planning have always seemed to fit naturally together. But in the early 1960s, when international awareness of the social and economic consequences of surging population growth moved family planning into a position of high priority, some international agencies began to advocate separation of family planning from health services. In international policy discussions the question continues to be important. This volume analyzes this question and provides arguments and evidence to support integration of health care and family planning; it outlines the purposes underlying the research in this area; and it proposes policy questions regarding the effectiveness, efficiency, and equity of such an integration.

The African Trypanosomiases: Methods and Concepts of Control and Eradication in Relation to Development
C. W. Lee and J. M. Maurice
Here is a practical cost-benefit approach to an age-old problem affecting humans and livestock alike, the African Trypanosomiases. Describes new techniques that offer tsetse control without destroying game animals. Also summarizes current research in genetic control, use of traps and screens, attractants, and pheromones.

Analyzing the Impact of Health Services: Project Experiences from India, Ghana, and Thailand
Rashid Faruque
A comprehensive review of experimental efforts in the developing world to determine more effective ways of providing family planning services.

Volume II. Integrated Family Planning and Health Care
Armindo A. Keilman and others
This volume provides detailed data suggesting that synergism between malnutrition and infection is probably the greatest cause of mortality, morbidity, and retarded growth and development in children. In an experiment over a period of four years, villagers received nutrition care, general health care to control infections, or both. Dramatic improvements, including a 40%-50% decline in mortality, a 20% reduction in duration of morbidity, and increases in height and weight. In addition, detailed information on costs is presented that permits the most complete analysis of cost-effectiveness and program relevant costs and benefits yet available in this kind of field research. The study focuses directly on practical program implications and ways in which such integrated services can be applied under field conditions.

Economic Motivation versus City Lights: Testing Hypotheses about Inter-Changwat Migration in Thailand
Fred Arnold and Susan H. Cochrane
A model identifying the many channels through which education might

Prices subject to change without notice and may vary by country.
Fertility and Its Regulation in Bangladesh
R. Amin and Rashid Faruqee
Staff Working Paper No 333 1980 54 pages (including references).
Stock No WP 0333 $3

Health
Fredrick Golladay, coordinating author
Draws on experience gained from health components of seventy World Bank projects in forty-four countries between 1975 and 1978. Emphasizes the disproportionately large expenditures incurred on curative medicine, maintenance of expensive hospitals, and sophisticated training of medical personnel at the cost of preventive care for the majority of the people. Points out that low-cost health care systems are feasible and recommends that the bank begin regular and direct lending for health, in addition to having health components as part of projects in other sectors.
Sector Policy Paper 1980 90 pages (including 3 annexes, 4 figures, map)
Stock Nos BK 9065 (Arabic), BK 9067 (English), BK 9068 (French), BK 9069 (Spanish) $5

Health Issues and Policies in the Developing Countries
Fredrick Golladay
Staff Working Paper No 412 1980 55 pages
Stock No WP 0412 $3

Health, Nutrition, and Family Planning in India: A Survey of Experiments and Special Projects
Rashid Faruqee and Ethna Johnson
Staff Working Paper No 507 1982 108 pages (including references)
Stock No WP 0507 $5

Infant and Child Mortality as a Determinant of Fertility: The Policy Implications
Susan Hill Cochrane and K. C. Zachanah
An illustrative analysis that suggests infant mortality may be an important component of a fertility reduction program in countries where mortality is high and few couples are able to have the number of surviving children they desire.
World Bank Staff Working Paper No 556 1983 44 pages
ISBN 0-8213-0147-0. Stock No WP 0556 $3

Integrating Family Planning with Health Services: Does It Help?
Rashid Faruqee
Staff Working Paper No 515. 1982. 47 pages

Migration in West Africa: Demographic Aspects
K. C. Zachanah and Julien Conde
The first study of the large-scale movement of people in nine West African countries. Discusses the volume and direction of internal and external flows and the economic and social characteristics of migrants.

Population and Family Planning in Bangladesh: A Study of the Research
Mohammad Alauddin and Rashid Faruqee
Reviews major studies on family planning and on fertility trends, profiles, and determinants. Evaluates results of such studies and critiques their methodology and application. Underscores the need for continued study and suggests directions for future research to improve the Bangladesh population problem.
World Bank Staff Working Paper No. 557 1983 176 pages

Population and Poverty in the Developing World
Nancy Birdsall
Stock No. WP 0404. $3

Population Policy and Family Planning Programs: Trends in Policy and Administration
Kandiah Kanagaratnam and Catherine S. Pierce
Stock No. WP 0447 $3

Visit the World Bank Bookstore when you are in Washington, D.C.
the predicted rate for each cell in the covariate matrix and then find the weighted average, where the weights are the fractions of births in each cell in the covariate matrix.

We do not, however, have the proportions in the covariate matrices. In fact, there are approximately 500,000 cells in some of these matrices. We only have the marginals, which are printed in the various studies. Hence, we are forced to evaluate the predicted mortality rate for a baby with average characteristics. We do this calculation by substituting \bar{X} for X in the equations above. The overall level predicted by the equations will not be the correct one, since the functions are highly nonlinear (the function of an average is not the average of functions) and since (having only the marginals) we in effect must assume that all covariates are uncorrelated. Even though levels are incorrect, however, implied proportional changes caused by substituting a hypothetical distribution (say, X^*) instead of \bar{X} are generally close to the answers that would be obtained in the correct manner. Econometricians have recognized this property in logit and tobit regressions; the predicted Y when the X's are set at their means is not \bar{Y} (as it would be with OLS), but the derivatives with respect to the parameters, estimated at the means of the X's, are generally close to the OLS parameter estimates. When we tried adjusting the constants to give the correct level, the implied proportional changes (when X^* was substituted for \bar{X}) were nearly identical to those obtained without adjusting the constants. Hence, we are confident that the implied proportional impacts that we estimate are reasonably accurate.

Of far more concern is the fact that we do not have the appropriate \bar{X}'s, except for the Hobcraft et al. study. Hobcraft et al. estimated their
models on a sample consisting of all births 5 to 15 years before the WFS survey, and the marginals for covariates are available. The other three studies, however, have a sample of all births to women in the surveys. Thus, the marginals do not refer to any period. For example, since the surveys pertain to women 15-49 at the time of the survey, births to older women are grossly under-represented and those to younger women are over-represented (relative to what a distribution of births in a given period would be) since all women can contribute births when young but only a few when old. Means of almost all covariates, calculated from the marginals, are distorted and thus require adjustment before we can determine how the mortality rate would change if the X's change. Information on the current period is clearly unavailable. We could, in principle, get the characteristics of births near the time of each WFS survey, but most of these surveys were conducted 5-10 years ago. Since the Hobcraft et al. means do apply to a particular period, they are not distorted by sample selection bias. The means, however, pertain to a period on average more than 15 years ago. Though in principle we could obtain means for a time closer to the present from the WFS standard recode files, in fact we have access only to a few of those used in these studies.

Thus we were forced to resort to cruder adjustments. The means for the Hobcraft et al. study were not adjusted. For the other studies we adjusted only the maternal age and birth order means because these were the variables we altered when assessing the potential effects of family planning on mortality. Adjustment of the means of other variables would have far less impact on our estimates because they remain constant throughout. Maternal age distributions were adjusted by estimating the
births for age groups of women during the three years before the survey, with age-specific fertility rates taken from Hannenberg [1980] and number of women married and proportion married taken from Goldman and Hobcraft [1982]. The distribution of births by birth order (one, two-three, four+) was much harder to adjust, since data on the distribution of births by birth order have seldom been published by WFS. Some of the evaluations of individual WFS Surveys include total fertility rates, total first birth rates, and total fourth-and-higher birth rates. These reports indicate that during the five years before the surveys, first births constituted about 14 percent of births when the TFR was high (~5.5) and about 18 percent when the TFR was lower (~4.5). The proportion of second- and third-order births was generally about twice the proportion of first order births. Information for Malaysia was available directly from Yatim [1982], and indicates a distribution split 17 percent for first births; 30 percent for second and third births; and 53 percent for fourth and higher order births. Based on these findings, we split the births in the Philippines and Indonesia in the proportions 18/36/46, in Pakistan in the proportions 14/28/58, and in Sri Lanka 20/40/40. These latter estimates almost certainly are not correct, but they are equally certain to be better than those "observed" from the entire sample. For example, in the Malaysian Survey used by Holland, the births were split 20/17/63.* Within each parity for Malaysia, the observed distribution of births by short and long prior birth intervals was not adjusted since there was insufficient information.

* This result seems quite implausible, but it is the one reported.
REFERENCES

from this type of sharing enhances the depth of understanding that came about in sharing the lives of villagers. The spent many years working with, and about 150 by the end of the project, through which education might started with 15 people and grew to twenty-six villages in Punjab, India. The research came out during 1967-74 in the purposes underlying the research Fertility and Education: What care and family planning; support the benefits of these services in international policy discussions. Some of the most children in the poor and deprived areas of the world? Some of the most specific evidence available today to support the benefits of these services is contained in these two studies, which represent the findings of research carried out during 1967-74 in twenty-six villages in Punjab, India. Members of the research staff, which started with 15 people and grew to about 150 by the end of the project, spent many years working with, and sharing the lives of, villagers. The depth of understanding that came from this type of sharing enhances the value of these findings and provides valuable insights into possibilities for implementing mass programs for needy people in villages throughout the world.

Volume I: Integrated Nutrition and Health Care
Arnfred A. Kielmann and others
This volume provides detailed data suggesting that synergism between malnutrition and infection is probably the greatest cause of mortality, morbidity, and retarded growth and development in children. In an experiment over a period of four years, villagers received nutrition care, general health care to control infections, and both. Dramatic improvements, including a 40%-50% decline in mortality, a 20% reduction in duration of morbidity, and increases in height and weight. In addition, detailed information on costs is presented that permits the most complete analysis of cost-effectiveness and program relevant costs and benefits yet available in this kind of field research. The study focuses directly on practical program implications and ways in which such integrated services can be applied under field conditions.

LC 82-23915. ISBN 0-8018-3064-8 Stock No. JH 3064 $24.50

Volume II: Integrated Family Planning and Health Care
Carl E. Taylor and others
To village people, politicians, and international health planners, health and family planning have always seemed to fit naturally together. But in the early 1960s, when international awareness of the social and economic consequences of surging population growth moved family planning into a position of high priority, some international agencies began to advocate separation of family planning from health services. In international policy discussions the question continues to be important. This volume analyzes this question and provides arguments and evidence to support integration of health care and family planning; it outlines the purposes underlying the research in this area, and it proposes policy questions regarding the effectiveness, efficiency, and equity of such an integration.

LC 83-22915. ISBN 0-8018-2830-9 Stock No. JH 2830 $22.50

Demographic Aspects of Migration in West Africa—
K. C. Zachariah and others
Volume 1
Staff Working Paper No. 414 September 1980 369 pages (including statistical annexes, bibliography)
Stock No. WP 0414 $15

Volume 2
Staff Working Paper No. 415 September 1980 391 pages (including statistical annexes, bibliography)
Stock No. WP 0415 $15

(Economic Motivation versus City Lights: Testing Hypotheses about Inter-City Migration in Thailand
Fred Arnold and Susan H. Cochrane
Staff Working Paper No. 416. September 1980 41 pages (including footnotes, references)
Stock No. WP 0416 $3

Experiments in Family Planning: Lessons from the Developing World
Roberto Cuca and Catherine S. Pierce
A comprehensive review of experimental efforts in the developing world to determine more effective ways of providing family planning services.
The Johns Hopkins University Press, 1978 276 pages (including bibliography, index of experiments)

Family Planning Programs: An Evaluation of Experience
Roberto Cuca
Staff Working Paper No. 345 1979 146 pages (including 2 annexes, references)
Stock No. WP 0345 $5

Fertility and Education: What Do We Really Know?
Susan H. Cochrane
A model identifying the many channels through which education might

Prices subject to change without notice and may vary by country.
act to determine fertility and a review of the evidence of the relation between education and the intervening variables in the model that affect fertility.

The Johns Hopkins University Press, 1979
188 pages (including bibliography, index)

Fertility and Its Regulation in Bangladesh
R. Amn and Rashid Faruqee
Staff Working Paper No. 133, 1980 54 pages (including references).
Stock No. WP 0383 $3

Health
Fredrick Golladay, coordinating author

Draws on experience gained from health components of seventy World Bank projects in forty-four countries between 1975 and 1978. Emphasizes the disproportionately high expenditures incurred on curative medicine, maintenance of expensive hospitals, and sophisticated training of medical personnel at the cost of preventive care for the majority of the people. Points out that low-cost health care systems are feasible and recommends that the Bank begin regular and direct lending for health, in addition to having health components as part of projects in other sectors.

Sector Policy Paper 1980 90 pages (including 8 annexes, 4 figures, map).
Stock Nos. BK 9066 (Arabic), BK 9067 (English), BK 9068 (French), BK 9069 (Spanish) $5

Health Issues and Policies in the Developing Countries
Fredrick Golladay
Staff Working Paper No. 412, 1980 55 pages
Stock No. WP 0412 $3.

Health, Nutrition, and Family Planning in India: A Survey of Experiments and Special Projects
Rashid Faruqee and Ethna Johnson
Stock No. WP 0507 $5

Infant and Child Mortality as a Determinant of Fertility: The Policy Implications
Susan Hill Cochrane and K. C. Zachanah
An illustrative analysis that suggests infant mortality may be an important component of a fertility reduction program in countries where mortality is high and few couples are able to have the number of surviving children they desire.

Integrating Family Planning with Health Services: Does It Help?
Rashid Faruqee
Staff Working Paper No. 515 1982 47 pages

Visit the World Bank Bookstore when you are in Washington, D.C.

Population and Poverty in the Developing World
Nancy Birdsall
Stock No. WP 0404 $3.

Population Policy and Family Planning Programs: Trends in Policy and Administration
Kandiah Kanagaratnam and Catherine S. Pierce
Stock No. WP 0447 $3.

Migration in West Africa:
Demographic Aspects
K. C. Zachanah and Julien Conde
The first study of the large scale movement of people in nine West African countries. Discusses the volume and direction of internal and external flows and the economic and social characteristics of migrants.

A joint World Bank-OECD study Oxford University Press, 1981. 166 pages (including 22 maps, bibliography, index)

Population and Family Planning in Bangladesh: A Study of the Research
Mohammad Alauddin and Rashid Faruqee
Reviews major studies on family planning and on fertility trends, profiles, and determinants. Evaluates results of such studies and critiques their methodology and application. Underscores need for continued study and suggests directions for future research to improve the Bangladesh population problem.

THE POTENTIAL IMPACT OF CHANGES IN FERTILITY ON